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CONVERGING SHOCK WAVES IN MEDIA WITH DECREASING DENSITY 

E. E. Lin, E. N. Pashchenko, and V. N. Pavelkin UDC 533.6.011.72 

A number of papers have studied the cumulation of shock waves (see, e.g., [i-8]. Here 
our specific interest is in investigating shock waves propagating into a decreasing density. 
For concentric convergent shock waves the problem was solved in [7] by the method of Whitham 
[6], with which one can evaluate the gas parameters on the wave front in the presence of a 
piston coming from infinity and generating a continuous inflow of energy in the focus region. 

In this paper we compare the solution of [7] with the results of an approximate study 
of instantaneous energy release (by a strong explosion) at the edge of a closed region with 
decreasing density of the medium toward the center. We also derived similar solutions 
for propagation of a spherical shock wave convergent toward the decreasing density in two 
limiting cases: the adiabatic and the isotherma I approximations. The latter regime of the 
process is linked with the stage of motion when radiative energy transfer appreciably affects 
the distribution of the flow parameters of the medium. In contrast with [7] the similarity 
study gave us both the law of motion of the wave front, and the distribution of flow parame- 
ters behind the front. 

I. We consider propagation of a shock wave toward a decreasing geometric section A and 
decreasing density of the medium P0 for two limiting laws of energy release at its boundary: 
i) exit of a steady strong shock wave generated by a piston moving in from infinity; 2) a 
strong explosion on a perfectly rigid wall bounding a region with variable A and P0. Physi- 
cally this means that in the first case the time for the shock wave to focus t, is much less 
than the time t o for the piston to reach the boundary of the region (t, << t~ and in the 
second case we have t, >> ~ (~ is the duration of the energy release). 

In Case i, applying the rule of characteristics from Whitham [6], we can obtain an equa- 
tion for the speed of the front of a strong shock wave in a region with decreasing A and P0: 

d In (D,p~An)/dx = 0. ( t .  t )  

Here x i s  t h e  c o o r d i n a t e  o f  t he  f r o n t ,  r e c k o n e d  f rom t h e  boundary  o f  t h e  r e g i o n  examined;  

= 1 / [ 1  + 2 /k  + $ 2 k / ( k  - 1 ) ] ;  g = 1 / [ 2  + J ~ k ] ( k - - ~ ] ;  and k i s  t h e  index  o f  a p o t y t r o p i c  
medium. Then from the  wave f r o n t  speed  D1, t h e  p r e s s u r e  a t  t he  f r o n t  Pl - P0D12, and t h e  
shock wave power Wz - plD1,  f rom Eq. ( 1 . 1 )  we o b t a i n  t h e  e x p r e s s i o n s  

01 .v  p~g (z)A -n  (x), Pl "" p~-2~ (x) A -2n (z), W 1 ~ p~-~ (x) A -3n (x). ( i .  2 )  

As k v a r i e s  in t he  r ange  1 1 / 9 - 3  t h e  c o r r e s p o n d i n g  v a l u e s  o f  t he  e x p o n e n t s  a r e  ~ = 0 . 1 8 8 ,  
0 .258 ,  ~ = 0 . 1 4 8 - 0 . 2 8 4 .  Th i s  means t h a t  t he  shock  speed  D z i n c r e a s e s  c o n t i n u o u s l y  as  t h e  
shock  p r o p a g a t e s ,  f o r  any laws o f  d e c r e s e  o f  P0 and A. The p r e s s u r e  Pl and t h e  power W 1 can 
e i t h e r  d e c r e a s e ,  remain  s t e a d y ,  or  i n c r e a s e ,  d e p e n d i n g  on t h e  c o m b i n a t i o n  o f  d e s c r i b i n g  laws 
f o r  P0 and A, s i n c e  in  t h e  r a n g e  of  k i n d i c a t e d ,  1 - 2~ > 0 and 1 - 3~ > 0. 

In  c a s e  2 t y p i c a l  p a r a m e t e r s  o f  t he  p rob l em a r e :  s u r f a c e  d e n s i t y  o f  e x p l o s i v e  e n e r g y  
i s  E0, t e s t  r e g i o n  r a d i u s  i s  R0, i n i t i a l  medium d e n s i t y  i s  p0(R) ,  where R = x0 - x i s  t h e  
radius of the shock wave front, and x 0 is the coordinate of the focus point. In this formu- 
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lation the problem is not self-similar because there is an initial parameter with a dimen- 
sioned length. The pressure at the shock wave front is proportional to the mean energy per 
unit volume [2]. Then, using the known conservation laws at the discontinuity, we can ob- 
tain expressions for the speed and strength of a strong shock wave: 

Ox ~ [EoSo (Ro)/Oo (R) V (R)] ~/~, W 1 m 9oO~ ~ p~t/2 (R) [EoS o (B)/V (R)l a/2. ( 1 .3  ) 

Here S0(R 0) is the area of the energy release surface; and V(R) is the volume of medium set 
in motion by the shock wave. Analysis of Eq. (1.3) shows that for decreasing p0(R) at some 
fixed values of the radii R01, R02 the corresponding values of D I and W I reach a minimum, 
and increase continuously with further propagation of the shock wave. In the case p0(R) 
const, D l and WI decrease continuously. 

Comparison of the two limiting solutions of Eqs. (1.2) and (1.3), e.g., for spherical 
symmetry and a power law density decrease P0 - R6, shows that as the focus point is ap- 
proached the increase of D I and W I occurs more steeply for a strong shock. This result is 
illustrated for 6 = 2 in Fig. i, where the curve i shows the exit of a stationary shock wave, 
and curve 2 shows a strong discontinuity. The exponents in Eq. (1.2) were assualed in the 
form ~ ~ 0.2~ q m 0.2 as average values in the above range. As the origin we took the val- 
ues D01, W01 at the point R = R01, the value at which the shock wave of a strong discontinu- 
ity begins to be accelerated. 

2. We now consider the problem of a convergent spherically symmetrical shock wave in 
a gas with density P0 = const r ~ decreasing with a power law (r is the ambient radius, 6 > 
0). In the adiabatic approximation the standard system of gasdynamic equations is written 
in [5] 

0 in p/Ot + uO In p/Or + Ou/Or + 2u/r = O, 

Ou/Ot + uOu/Or + p-lOp/Or = O, ( 2 . 1 )  

0 In (pp-h)/Ot + uO In (pp-k)/Or = O, 

where t is time; u, p, p are the bulk velocity, density, and pressure of the medium; and k 
is the adiabatic exponent (polytropic). We introduce the similarity variable $ = r/R (R is 
the radius of the shock wave front, assumed as the scale length). We seek a solution of the 
system (2.1) in the form 

P = P0R2~(~}, P = 90g(~}, u = Rv(~). ( 2 . 2 )  

Here  R = dR/d t  i s  t h e  shock  s p e e d ;  and ~(C) ,  g ( ~ ) ,  r ( ~ )  a r e  t h e  d i m e n s i o n l e s s  f u n c t i o n s .  
S u b s t i t u t i n g  gq. ( 2 . 2 )  i n t o  Eq. ( 2 . 1 )  and s e p a r a t i n g  t h e  v a r i a b l e s  t and ~, we o b t a i n  f o r  
R and the flow parameters behind the shock the respective equations 

R = A(- - t )  a, t <. 0 ( 2 . 3 )  

(A and a a r e  c o n s t a n t s ) ;  

6 + v' + (v - -  ~)(ln g)' + 2v/~ = 0, v(a --  l ) la  + (~- -  ~)v' + 
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TABLE 1 

6 

Cr 

5/4 
7/5 
5/3 
3 

0,7443045 
0,717~205 
0,6883547 
0,6364135 

0,657853 
0,6265963 
0,5946639 
0,5384225 

0,59t2589 
0,5587242 
0,5263143 
0,4710393 

0,5376453 
0,505025 
0,4742293 
0,420417 

0,4932809 
0,46ii55t 
0,4303797 
0,38041t7 

0,4558393 
0,424506 
0,3949006 
0,3477523 

TABLE 2 

6 

(Z 

51'4 
7/5 
5/3 
3 

0.5019466 
0,4525352 
0,404909 
0,3333333 

0,4~27426 
0,3624235 
0,3155993 
0,25 

0,3496855 
0,30i4 
0,2577856 
0,2 

0,302958 
0,2575455 
0,2t74872 
0,1666667 

0,2670305 
0,2246003 
0,~8787t6 
0,i428572 

n ' / g  = 0 ,  2 ( a - -  l ) / a +  5 ( t - - k )  ~ ( v - -  ~ ) ( l n (~g -k ) ) '  = 0  ( 2 . 4 )  

(the prime denotes differentiation with respect to $). We determine the boundary conditions 
for the system of equations obtained with $ = 1 from Eq. (2.2), starting from the relations 
at the front of a strong shock wave: 

u ( t )  = 2/(k + 1), g(1) = (k + l ) / (k  - -  1), ~(1) = 2/(k § t ) .  

In Eq. (2.4) the unknown parameter is the similarity exponent a, and the values of ~ and 
k are given from the conditions of the problem. The quantity ~, which determines the law of 
motion of the wave front, Eq. (2.3), is found from the condition that the solution of the 
system of equations (2.4) be unique. 

Introducing the variables p(~) = ~2~($)/~2, V(~) = ~v(~)/~, o(~) = g(~), Z = kp/o, and 
transforming the system of equations (2.4) and the corresponding boundary conditions, and 
choosing a numerically to satisfy the condition [I] that the integral curve Z(V) should pass 
through the special point Z*, V*, where the determinant of the system of equations obtained 
goes to zero simultaneously, we find the solution of this problem to within an undefined mul- 
tiplier A. Here the distribution of gas density in the flow is found accurately from the 
fact that the initial law p0(r) is given from the condition, while the density Pl at the 
front of a strong shock is given from the relation Pl = P0( k + l)/(k - i). 

In the isothermal approximation (aT/Sr = 0, T is the temperature) the system of gasdy- 
namic equations for a polytropic gas has the form 

In p.,'~Tt T u?  in  p/(gr -~- Ou,'cTr ~, 2u;r = O, 
&~.,"~)t ~, udu,'Or _ (p,"p~ = O. ( 2 . 5 )  

In contrast to [8] in this paper we consider a convergent spherically symmetric shock wave. 
The method of solution is analogous to that described above. Introducing the variables ~ = 
r/R, v, g, ~, we find u = Rv($)2/(k + I), p = p0g(~)(k + l)/(k - i), p = p0Ri~(~)2/(k + i) 
with the boundary conditions v(1) = g(1) = v(1) = i. For the similarity distributions of 
parameters behind the shock from Eq. (2.5) we find the system of equations 

v(a - -  l ) / a  + [2v/(k + t ) - - ~ ] d v / d ~  + [(k - -  t ) / (k  + l ) ] d l n  g ~  = O ,  
( 2 . 6 )  

5 + [2v/(k + l ) - - ~ ] d l n  g ~  + [2/(k + t ) ] d v ~  + [4/(k + 1 ) 1 ~  = O. 

Making the substitution ~ = i/$ for the functions v and g we have 

d_fv -~- ~n (k - -  t)/(k --~ i) -~ 4v• 2 (k -- !)/(k -~ i) 2 - -  [2v~/(k -~ l) - -  l] v (~ - -  |)/~z 
d• u {~22 (k - -  l)/(k q- t) ~ - -  [2• + i) - -  i] ~} ' 

d in g --__ 4v• + i) [2v• + 1) - -  l] n L 2vu (t - -  a)/a (k t i) -~ 6 [2vu/(k ~- i) --  l] 
dn • {[2vu/(k -~ i) - - i ]  ~ - -  2 (k - -  i) • -~- l) ~} 

( 2 . 7 )  
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The parameter ~ in the law of motion of the shock front (2.3) and in the system (2.6) is de- 
termined from the condition that the integral curve should pass through the singular point 
of Eq. (2.7): 

•  : 2 (i  - -  r 

I /r2 ( k - -  l ) / (k + i) 2 [ V [ 2  H- ~ q- (l  - -  ~),/~]2 - -  8 (i  - -  ~ ) /=  ~- 2 - ~  6 + ( i  - -  a ) / t z ] '  

o _:_ ~ !_ (a  - -  l ) / a  -~ I / f [2  q- O + (~ - -  i ) / a ]  ~ + 4 ( i  - -  ct) /a 

[2 (i - o~)I~] -I/(-VL--- I)/2 

Just as in the adiabatic approximation the pressure and the velocity are found to within an 
undetermined constant, this being linked to the indeterminacy of the factor A in Eq. (2.3). 

The computed values of the similarity exponent ~ in the adiabatic and isothermal approx- 
imations are shown in Tables i and 2, respectively. As in the planar symmetry case [8] in 
the isothermal approximation a is less than in the adiabatic approximation, i.e., the speed 

~ R (e-1)/e of the front "isothermal" shock increases more steeply as one approaches the center 
of symmetry than does the front"adiabatic" shock. This behavior of the shock is linked to the large 
pressure gradient behind the front 8p/ar for 8T/ar = 0, which can be seen by comparing the distribu- 
tions of p and p in the flow presented in Figs. 2-4 for 6 = 2. The origin for the computa- 
tion was the values of the parameters on the front: r/R = i, P/Pl = P/Pl = i. Curves 1-4 
are for k = 5/4, 7/5, 5/3, 3. Figures 2 and 3 correspond to the adiabatic approximation, 
and 4 to the isothermal. 

3. The results shown in Tables I and 2 may prove useful in the choice of experimental 
conditions to investigate convergent shock waves in media with decreasing density, and also 
the action of these shock waves on targets located at the center of the focusing region. 
Thus, by comparing the solutions (1.2) and (1.3) (see Fig. i) we can conclude that a shock 
wave formed at the strong discontinuity on the boundary of a region with decreasing density 
is more restricted in radiative time and also in mechanical action on the target than the 
shock wave generated by a piston. Of specific interest is the pressure distribution of Fig. 
2 in a flow with k = 3, 6 = 2. The pressure behind the shock is almost independent of the 
coordinate, i.e., is constant. Computations show that for 6 > 2 the pressure gradient be- 
hind the shock is positive (ap/ar > 0) for k = 3. This type of p distribution generates 
favorable conditions for compression of targets, e.g., in the study of phase transformations 
and creating new materials. 

i. 

2. 

3. 

4. 

5. 

6.  
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ALLOWING FOR INTERMOLECULAR ENERGY EXCHANGE IN THE DESCRIPTION 

OF RELAXATION PROCESSES IN TERMS OF ADIABATIC VARIABLES 

V. M. StrelVchenya UDC 533.6.011 

The solution of the complete system of gasdynamic equations, supplemented by kinetic 
equations describing vibrational-rotational relaxation or the kinetics of phase transforma- 
tions [1-4], is an exceedingly complex problem. The difficulty of the problem makes it im- 
portant to find simpler methods of describing transformation kinetics by means of approxi- 
mate solutions of relaxation equations [i, 5]. One such method was developed in [6-9] for 
rate coefficients of arbitrary form. It is based on the introduction of adiabatic variables 
which diagonalize (in the case of distributions which are smooth with respect to quantum 
number) the initial system of kinetic equations to within a small parameter. 

In the present study - a continuation of [6-9] - we examine two methods of describing 
the contribution of intermolecular energy exchange to the relaxation of the populations of 
individual levels in terms of adiabatic variables. The methods make it possible to obtain 
approximate analytic solutions of the kinetic equations for different relaxation regimes. 

i. System of Relaxation Equations and Adiabatic Variables. Let us examine the process 
of relaxation in a mixture of molecules of species s. We will assume that the internal 
state of a molecule is characterized by a single quantum number v (such as in the case of 
delayed vibrational relaxation in a mixture of diatomic molecules [I0]). The equations for 
the populations of individual energy levels ns(V) ~ ns(V ; r, t) have the form [i0] 

o,,~(,__~) + V" [un. (v)l + v" [u. (v) . .  (v)] = 4 (s I n), 
at 

4 (~ I n) = Z I? ~ (.~ I n) = Z E .r(s (.~, ~, In), 
i=1,2 i = 1 , 2  s 1 

( 1 . 1 )  

where u is the hydrodynamic velocity; Us(V) is the rate of diffusion of molecules of species 

s in the state v; Iv(I) is the linear part of the collision integral, describing the trans- 

fer of energy between the internal and translational degrees of freedom of the gas; and !v(2) 
is the quadratic part of the collision integral, responsible for intermolecular energy trans- 
fer. 

For the concentrations 

Eqs. (i.i) take the form 

x~ (v) ----- n~ (v)/n, n -~ Z n~ (v) ( 1 . 2 )  
$,V 

a t  

J',(v) ! ,~ ' v '  [u~(v>~(v) : [,,(.s'[x) 

l~ 1) (< ~ ] x) = E [p~,,, (~, .~)z~(~O - n,:~ (~, ,"0 ~'~ (~')1, 
,tt 

z~J ~ (s, ,~, I x) :  Z r , , ~ .  .,.~. (~,, .~) ~ (,,) ~q ' ~ L t ~,'  b~, sa )  x.~ ( F )  x q  ( x )  - -  . v ~  ()~)] 

(1.3) 

(1.4) 
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